📌 Supported Models in PromptRefiner
Promptrefiner leverages LiteLLM under the hood, providing seamless integration with 100+ Large Language Models (LLMs) from top AI providers like OpenAI, Anthropic, TogetherAI, AI21, and more! 🚀
Why does this matter?
This means any model supported by LiteLLM is automatically supported by Promptrefiner. You can refine your prompts using the most advanced AI models available today.
🎯 Supported Models
Since Promptrefiner relies on LiteLLM, it supports all models listed here.
To see the full list of supported models, run:
from litellm import model_list
print(model_list())
🎯 How Model API_KEY Selection Works?
To interact with hosted LLM you will need an API_KEY, it's confidential and mostly provided to any application from environment variable.
When you work with promptrefiner you don't need to worry about it, because we internally map PREFINER_API_KEY
to the right API key automatically!
We've designed it to make things easier by allowing a single environment variable:
export PREFINER_API_KEY="your_secret_key_here"
Note
But if you prefer provider-specific API keys, you can still use them! ✅
âš¡ How API Key Handling Works?
Promptrefiner automatically detects the model provider and assigns the appropriate API key.
✔ If using PREFINER_API_KEY → No extra setup needed!
✔ If using provider-specific API keys → The library will detect and use them accordingly.
🛠Example Usage:
Using PREFINER_API_KEY (Recommended for Simplicity)
export PREFINER_API_KEY="your_openai_or_anthropic_key"
# If PREFINER_MODEL exported, default to openai/gpt-3.5-turbo
export PREFINER_MODEL="anthropic/claude-3.5"
from promptrefiner import PromptRefiner
prompt_refiner = PromptRefiner(strategies=["persona"])
refined_prompt = prompt_refiner.refine("Explain quantum mechanics.")
print(refined_prompt)
Using Provider-Specific API Keys
export ANTHROPIC_API_KEY="your_anthropic_key"
# If PREFINER_MODEL exported, default to openai/gpt-3.5-turbo
export PREFINER_MODEL="anthropic/claude-3.5"
from promptrefiner import PromptRefiner
prompt_refiner = PromptRefiner(strategies=["persona"])
refined_prompt = prompt_refiner.refine("Explain quantum mechanics.")
print(refined_prompt)